Carnitine

Allows cells to use fatty acids as an efficient non-glycogen source of fuel; Improves muscle recovery; Offsets the rise in creatine kinase, an indicator of muscle damage. ^{35,36}

Asparagine

Increases the capacity of muscle to use fatty acids and spare glycogen, thus increasing time to physical exhaustion; Intensive training lowers asparagine levels. 32,33,34

Serine

Keeps an athlete's hormone profile healthy by buffering post-workout cotisol levels, which can cause excess muscle breakdown; May increase aerobic capacity. ^{29,30,31}

Magnesium

Key to the production of ATP (adenosine triphosphate) which is the body's main storage form of energy; Supplementation may improve aerobic performance and muscle strength and repair.^{27,28}

Zinc

Interacts with hormones to improve body composition and strength; Deficiency impairs peak oxygen uptake during exercise; Low zinc common in distance runners & gymnasts; Supplementation should be accompanied by copper.^{24,25,26}

Copyright 2012 SpectraCell Laboratories, Inc. All rights reserved. Doc 399 07.13

Glutamine

Glutamine depletion compromises immunity in many athletes after intense physical training; Glutamine supplementation by marathoners reduced post-race infections. ^{1,2,3,4}

Coenzyme QI0

Mitigates muscle damage after high intensity training; Trials indicate CoQ10 benefits both strength and endurance; 300 mg of CoQ10 increased power in Olympic athletes. ^{56.7}

Lipoic Acid

This powerful antioxidant reduces cellular damage due to intense physical exercise; Recycles other antioxidants such as glutathione.^{8,9}

Glutathione

Powerful antioxidant; Detoxifies cellular by-products after workouts; Reduced blood levels of glutathione are counterproductive to an athlete in training.^{10,11}

Cysteine

Reduces time to fatigue in endurance sports such as cycling; Precursor to glutathione; Supplementation raises glutathione levels. ^{12,13,14}

Vitamin C

Decreases post-workout soreness; Required for collagen synthesis and thus protects muscles from injury due to trauma or training; Reduces cortisol induced muscle catabolism. ^{15,16,17}

Vitamin E

Intense training causes cellular stress;Vitamin E protects the enzymes responsible for repairing this cellular damage. ^{18,19}

B Vitamins

Cofactors for efficient engergy metabolism from food; Synthesizing red blood cells requires B9 (folate) and B12; Deficiencies in various B vitamins may slow healing in sports injuries.^{22,23}

SPORTS

NUTRITION

Vitamin D

Improves bone strength, thus reducing potential for sportsrelated injuries and stress fractures.^{20,21}

Additional nutrients affect athletic performance. This list is non-exhaustive.

www.SpectraCell.com

REFERENCES

¹ Agostini F, Biolo G. Effect of physical activity on glutamine metabolism. <i>Curr Opin Clin Nutr Metab Care</i> 2010;13:58-64.	¹⁹ Naziroglu M, Kilinc F, Uguz A et al. Oral vitamin C and E combination modulates blood lipid peroxidation and antioxidant vitamin levels in maximal exercising basketball players. <i>Cell Biochem Funct</i> 2010;28:300-305.
² Castell L, Newsholme E. The effects of oral glutamine supplementation on athletes after prolonged, exhaustive exercise. Nutrition	
1997;13:738-742.	²⁰ Ogan D, Pritchett K. Vitamin d and the athlete: risks, recommendations, and benefits. <i>Nutrient</i> 2013;5:1856-1868.
¹ Rowbottom D, Keast D, Morton A. The emerging role of glutamine as an indicator of exercise stress and overtraining. <i>Sports Med</i> 1996;21:80-97.	²¹ Lewis R, Redzic M, Thomas D. The effects of seaon-long vitamin D supplementation on collegiate swimmers and divers. <i>Int J Sport Nutr Exerc Metab</i> 2013 Epub ahead of print.
'Keast D, Arstein D, Harper W et al. Depression of plasma glutamine concentration after exercise stress and its possible influence on the immune system. <i>Med J Aust</i> 1995;162:15-18.	²² Woolf K, Manore M. B-vitamins and exercise: does exercise alter requirements? Int J Sport Nutr Exerc Metab 2006;16:453-484.
ⁱ Alf D, Schmidt M, Siebrecht S. Ubiquinol supplementation enhances peak power production in trained athletes: a double-blind, placebo controlled study. J Int Soc Sport Nutr 2013;10:24.	²³ Manore M. Effect of physical activity on thiamine, riboflavin and vitamin B6 requirements. Am J Clin Nutr 2000;72:598S-606S.
⁶ Diaz-Castro J, Guisado R, Kajarabille N et al. Coenzyme Q(10) supplementation ameliorates inflammatory signaling and oxidative stress	²⁴ Micheletti A, Rossi R et al. Zinc status in athletes: relation to diet and exercise. Sports Med 2001;31:577-582.
 ⁷Mizuno K, Tanaka M, Nozaki S et al. Antifatigue effects of coenzyme Q10 during physical fatigue. <i>Nutrition</i> 2008;24:293-299. 	²⁵ Lukaski H. Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise. Am J Clin Nutr 2005;81:1045-1051.
⁸ Zembron-Lacny A, Szyszka K, Szygula Z. Effect of cysteine derivatives administration in healthy men exposed to intense resistance exercise by evaluation of pro-antioxidant ratio. <i>J Phsylol Sci</i> 2007;57:343-348.	²⁶ Kelly G. Sports Nutrition: A review of selected nutritional supplements for bodybuilders and strength athletes. <i>Altern Med Rev</i> 1997:2:184-201.
⁹ Zembron-Lacny A, Slowinska-Lisowska M, Szyfula Z et al. Assessment of the antioxidant effectiveness of alpha-lipoic acid in healthy men exposed to muscle-damaging exercise. J Phsviol Pharmacol 2009:60:139-143.	²⁷ Golf S, Bender S, Gruttner J. On the significance of magnesium in extreme physical stress. Cardiovasc Drugs Ther 1998;12:197-202.
·	²⁸ Brilla L, Haley T. Effect of magnesium supplementation on strength training in humans. J Am Coll Nutr 1992;11:326-329.
¹⁰ Kretzschmar M, Müller D. Aging, training and exercise. A review of effects on plasma glutathione and lipid peroxides. Sports Med 1993;15:196-209.	²⁹ Starks M, Starks S et al. The effects of phosphatidylserine on endocrine response to moderate intensity exercise. J Int Soc Sports Nutr 2008:5:11.
¹¹ Leeuwenburgh C, Leichtweis S, Hollander J et al. Effect of acute exercise in glutathione deficiency heart. <i>Mol Cell Biochem</i> 1996;156:17-	
24.	³⁰ Monteleone P, Bienat L, Tanzillo C et al. Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinology 1990;52:243-248.
¹² Medved I, Brown M et al. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. <i>J Appl Physiol</i> 2004;97:1477-1485.	³¹ Kingsley M, Miller M, Kilduff L et al. Effects of phosphatidylserine on exercise capacity during cycling in active males. <i>Med Sci Sports</i>
¹³ Medved I, Brown M, Bjorksten A et al. Effects of intravenous N-acetylcysteine infusion on time to fatigue and potassium regulation during	Exerc 2000,30.04-71.
prolonged cycling exercise. <i>J Appl Physiol</i> 2004;96:211-217.	³² Marquezi M, Roschel H et al. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. Int J Sport Nutr Exer Metab 2003;13:65-75.
Sekhar R, Patel S, Guthikonda A et al. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine synphementation. Am J Clin Nutr 2011;94:847-853	22
¹⁵ Bryer S, Goldfarb A. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to	³³ Lancha A, Recco M et al. Effect of aspartate, asparagine, and carnitine supplementation in the diet on metabolism of skeletal muscle during a moderate exercise. <i>Physiol Behav</i> 1995;57:367-371.
eccentric exercise. Int J Sport Nutr Exerc Metab 2006;16:270-280.	³⁴ Ditkanen H. Mero A. Aia S. at al. Effects of training on the everyise induced changes in serum amino aside and hormonos. J. Strangth
¹⁶ Thompson D, Williams C, McGregor S et al. Prolonged vitamin C supplementation and recovery from demanding exercise. Int J Sport Nutr Every Metab 2001-11:466-481	Cond Res 2002;16:390-398.
1400 LACID MICLAN 2001,11.400-401	³⁵ Giamberardino M, Dragani L, Valente R et al. Effects of prolonged L-carnitine administration on delayed muscle pain and CK release after
¹⁷ Nakhostin-Roohi B, Babaei P, Rahmani F et al. Effect of vitamin C supplementation on lipid peroxidation, muscle damage and inflammation after 30-min exercise at 75% VO2max. <i>J Sports Med Phys Fitness</i> 2008;48:217-224.	eccentric effort. Int J Sports Med 1996;17:320-324.
¹⁸ Tsakiris S, Karikas G, Parthimos T et al. Alpha-tocopherol supplementation prevents the exercise-induced reduction of serum paraoxonase 1/arylesterase activities in healthy individuals. <i>Eur J Clin Nutr</i> 2009;63:215-221.	³⁶ Ho J, Kraemer W, Volek J et al. I-Carnitine I-tartrate supplementation favorably affects biochemical markers of recovery from physical exertion in middle-aged men and women. <i>Metabolism</i> 2010;59:1190-1199.
	Additional references at http://www.spectracell.com/clinicians/clinical-education-center/online-library-mnt-sports-medicine-abstracts/
Copyright 2012 SpectraCell Laboratories, Inc. All rights reserved. Doc 399 07.13	

SpectraCell Laboratories

www.SpectraCell.com