Folate

Protects genes during rapid cell division which increases likelihood of a healthy embryo (via methylation of DNA); Deficiency raises homocysteine which damages reproductive cells.^{1,2,3,4}

Vitamin B₆ & B₁₂

Both are neededto convert toxic homocysteine to a benign form; Low homocysteine levels linked to a better chance of pregnancy.^{5,6,7,8}

Vitamin C

Increases serum progesterone levels; Induces ovulation in some women; Enhances effect of the fertility drug clomiphene. 9,10,11,12

Minerals

Several enzymes needed to protect a woman's reproductive organs (such as superoxide dismutase) are dependent on the trace elements **zinc, copper and magnesium**.

Vitamin D

Higher levels linked to better success rates of IVF (in vitro fertilization); Influences production of the sex hormones estradiol and progesterone. 13,14,15

Antioxidant Status

Reproductive cells, including embryos, are very susceptible to damage from oxidative stress due to the rapid rate of growth; Low antioxidant status can cause infertility or miscarriage. 19,22,28,29

Female Fertility

Vitamin E

Protects reproductive cells (follicles); May improve endometrial response (ability of fertilized egg to implant into uterine wall propersly) during IVF. 16,17,18,19

Cysteine

N-acetyl cysteine can improve ovulation and pregnancy rates in women with infertility due to PCOS (polycystic ovary syndrome) that do not respond to fertility drugs; Improves viability of endometrial cells in vitro; Precurso to glutathione. 25,26,27

Glutathione

Protects eggs (fertilized or not) from damage by reactive oxygen species; Protective action of follicle stimulating hormone on embryonic development is due largely to glutathione synthesis.^{22,23,24}

Selenium

Deficiency implicated in miscarriage and infertility; In one trial, 100% of infertile women achieved pregnancy after supplementation. ^{20,21}

Copyright 2013 SpectraCell Laboratories, Inc. All rights reserved. Doc 389 02.13

REFERENCES

¹Laanpere M, Altmäe S, Stavreus-Evers A et al. Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr Rev 2010;68:99-113.

²Forges T, Monnier-Barbarino P, Alberto J et al. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update 2007;13:225-238.

³Ebisch I,Thomas C, Peters W et al.The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update 2007;13:163-174.

⁴Dawson D, Sawers A. Infertility and folate deficiency. Case Reports. Br J Obstet Gynaecol 1982;89:678-680.

⁵Ocal P, Ersoylu B, Cepni I et al. The association between homocysteine in the follicular fluid with embryo quality and pregnancy rate in assisted reproductive techniques. J Assist Reprod Genet 2012;29:299-304.

⁶Berker B, Kaya C, Aytac R et al. Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction. Hum Reprod 2009;24:2293-2302.

⁷Ebisch I, Peters W,Thomas C et al. Homocysteine, glutathione and related thiols affect fertility parameters in the (sub)fertile couple. Hum Reprod 2006;21:1725-1733.

⁸Jerzak M, Putowski L, Baranowski W. Homocysteine level in ovarian follicular fluid or serum as a predictor of successful fertilization. Gynekol Pol 2003;74:949-952.

⁹Henmi H, Endo T, Kitajima Y et al. Effects of ascorbic acid supplementation on serum progesterone levels in patients with a luteal phase defect. Fertil Steril 2003;80:459-461.

¹⁰Tannetta D, Sargent I, Linton E et al. Vitamins C and E Inhibit Apoptosis of Cultured Human Term Placenta Trophoblast. Placenta 2008;29:680-690.

¹¹Luck M, Jeyaseelan I, Scholes R. Ascorbic acid and fertility. Biol Reprod 1995;52:262-266.

¹²Igarashi M.Augmentative effect of ascorbic acid upon induction of human ovulation in clomipheneineffective anovulatory women. Int J Fertility 1977;22:168-173.

¹³Lerchbaum E, Obermayer-Pietsch B.Vitamin D and fertility: a systematic review. Eur J Endocrinol 2012;166:765-778.

¹⁴Anagnostis P, Karras S, Goulis D.Vitamin D in human reproduction: a narrative review. Int J Clin Pract 2013;Epub ahead of print.

¹⁵Ozkan S, Jindal S, Greenseid K et al. Replete vitamin D stores predict reproductive success following in vitro fertilization. Fertil Steril 2010:94:1314-1319.

¹⁶Cicek N, Eryilmaz O, Sarikaya E et al. Vitamin E effect on controlled ovarian stimulation of unexplained infertile women. | Assist Reprod Genet 2012;29:325-328

Copyright 2013 SpectraCell Laboratories, Inc. All rights reserved. Doc 389 02.13

¹⁷Nugent D, Newton H, Gallivan L et al. Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. I Reprod Fertil 1998;114:341-346.

¹⁸Campos C, Ferriani R, Dos Reis R et al. Lipid peroxidation and vitamin E in serum and follicular fluid of infertile women with peritoneal endometriosis submitted to controlled ovarian hyperstimulation: a pilot study. Fertil Steril 2008:90:2080-2085.

¹⁹Tarin J, Ten J, Vendrell F et al. Effects of maternal ageing and dietary antioxidant supplementation on ovulation, fertilisation and embryo development in vitro in the mouse. Reprod Nutr Dev 1998;38:499-508.

²⁰Mistry H, Broughton Pipkin F, Redman C et al. Selenium in reproductive health. Am J Obstet Gynecol 2012;206:21-30.

²¹Howard J, Davies S, Hunnisett A. Red cell magnesium and glutathione peroxidase in infertile women – effects of oral supplementation with magnesium and selenium. Magnes Res 1994;7:49-57.

²²Fujii J, luchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 2005;3:43.

²³Tsai-Turton M, Luderer U. Opposing effects of glutathione depletion and follicle-stimulating hormone on reactive oxygen species and apoptosis in cultured preovulatory rat follicles. Endocrinology 2006;147:1224-1236.

²⁴Gardiner C, Salmen J, Brandt C. Glutathione is present in reproductive tract secretions and improves development of mouse embryos after chemically induced glutathione depletion. Biol Reprod 1998;59:431-436.

²⁵Badawy A, State O, Abdelgawad S. N-acetyl cysteine and clomiphene citrate for induction of ovulation in polycystic ovary syndrome: a cross-over trial. Acta Obstet Gynecol Scand 2007;86:218-222.

²⁶Rizk A, Bedaiwy M, Al-Inany H. N-acetyl cysteine is a novel adjuvant to clomiphene citrate in clomiphene citrate-resistance patients with polycystic ovary syndrome. Fertil Steril 2005;83:367-270.

²⁷Estany s, Palacio J, Barnadas R et al. Antioxidant activity of N-acetylcysteine, flavonoids and alpha-tocopherol on endometrial cells in culture. | Reprod Immunol 2007;75:1-10.

²⁸Agarwal A, Gupta S, Sharma R. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2005;3:28.

²⁹Ruder E, Hartman T, Blumberf J et al. Oxidative stress and antioxidants: exposure and impact on female fertility. Hum Reprod Update 2008;14:345-357.

³⁰Pathak P, Kapil U. Role of trace elements zinc, copper and magnesium during pregnancy and its outcomes. Indian | Pediatr 2004;71:1003-1005.

³¹Noda Y, Ota K, Shirasawa T et al. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biol Reprod 2012;86:1-8.

³²Cetin I et al. Role of micronutrients in the periconceptual period. Hum Reprod Update 2010;16:80-95. Additional references at http://www.spectracell.com/online-library-mnt-infertility-female-abstracts/

