Manganese

Cofactor to an antioxidant (superoxide dismutase) that repairs damage to blood vessels caused by oxidized LDL (low density lipoprotein).^{1,2}

Zinc

Suboptimal zinc raises dangerous lipoproteins that promote vascular inflammation and arterial plaque formation; Cellular zinc controls the gene that makes heart-protective HDL (high density lipoprotein). ^{34,35,36}

Selenium

Prevents post-prandial (after a meal) changes in lipoproteins that make them susceptible to oxidation and thus harmful. ^{32,33}

Copper

Several copper-dependent enzymes affect lipoprotein metabolism; Deficiency contributes to fatty buildup in arteries caused by dyslipidemia. ^{29,30,31}

Coenzyme QI0

It is well established that statins, often prescribed for dyslipidemia, deplete CoQ10; Lowers Lp(a) and improves efficacy of some dyslipidemia meds. ^{27,28}

Copyright 2013 SpectraCell Laboratories, Inc. All rights reserved. Doc 396 05.13

Magnesium

Deficiency causes proatherogenic (heart-disease causing) changes in lipoprotein metabolism; Protects LDL (low density lipoprotein) from being oxidized. ^{3,4}

Vitamin C

Protects LDL from oxidation, thus making it less "sticky" and prone to atherosclerosis (clogging of arteries); Prevents white blood cells (monocytes) and oxidized LDL from sticking to blood vessel wall; Lowers Lp(a) in some people. ^{5,6,7}

Vitamin D

Suppresses foam cell formation thus reducing risk of lipid-related arterial blockages; Deficiency linked to dyslipidemia.^{8,9}

Vitamin B3

Niacin (B3) effectively lowers the highly atherogenic Lp(a) by decreasing its rate of synthesis in the liver. ^{10,11}

Vitamin B5

Favorably alters low density lipoprotein metabolism and reduces triglycerides; Full benefit of lipid lowering effects may not be seen for up to four months. ^{12,13}

Carnitine

In supplementation trials, carnitine lowers triglycerides, oxidized LDL and the atherogenic Lp(a); This effect is likely due to its role in transporting fatty acids into cells so they can be used as fuel. 14,15,16

Lipoic Acid

Improves lipid profile by reducing small, dense LDL (dangerous type); Protects vascular lining from oxidized cholesterol. ^{17,18}

Additional nutrients affect lipid metabolism. This list is non-exhaustive.

DYSLIPIDEMIA

Chromium Specifically improves the dyslipidemia that Regulates HDL

accompanies insulin

with niacin (B3) for

dyslipidemia. 24,25,26

resistance; May increase

HDL; Synergistic effect

Regulates HDL metabolism; Part of the enzyme lecithincholesterol acyltransferase that has a major impact on lipoprotein metabolism.^{22,23}

Inositol

Decreases small, dense LDL especially in patients with metabolic syndrome; Lowers triglycerides. ^{19,20,21}

www.SpectraCell.com

SpectraCell Laboratories

REFERENCES

¹Takabe W, Li R, Ai L et al. Oxidized low-density lipoprotein-activated c-Jun NH2-terminal kinase regulates manganese superoxide dismutase ubiquitination: implication for mitochondrial redox status and apoptosis. Arterioscler Thromb Vasc Biol. 2010;30:436-41

²Perrotta I, Perrotta E, Sesti S et al. MnSOD expression in human atherosclerotic plaques: an immunohistochemical and ultrastructural study. Cardiovasc Pathol 2013;Epub ahead of print.

³Maier J. Low magnesium and atherosclerosis: an evidence-based link. Mol Aspects Med 2003;24:137-146.

⁴Sherer Y, Bitzur R, Cohen H et al. Mechanisms of action of the anti-atherogenic effect of magnesium: lessons from a mouse model. Magnes Res 2001;14:173-179.

⁵Woollard K, Loryman C, Meredith E et al. Effects of oral vitamin C on monocyte: endothelial cell adhesion in healthy subjects. Biochem Biophys Res Commun 2002;294:1161-1168.

⁶Shariat S, Mostafavi S, Khakpour F. Antioxidant effects of vitamins C and e on the low-density lipoprotein oxidation mediated by myeloperoxidase. Iran Biomed J 2013;17:22-28.

⁷Rath M. Lipoprotein-a reduction by ascorbate. J Orthomolec Med 1992;7:81-82.

⁸Riek A, Oh J, Bernal-Mizrachi C. Vitamin D regulates macrophage cholesterol metabolism in diabetes. J Steroid Biochem Mol Biol 2010;121:430-433.

⁹Guasch A, Bulló M, Rabassa A et al. Plasma vitamin D and parathormone are associated with obesity and atherogenic dyslipidemia: a cross-sectional study. Cardiovasc Diabeto. 2012;11:149.

¹⁰Seed M, O'Connor B, Perombelon N et al. The effect of nicotinic acid and acipimox on lipoprotein(a) concentration and turnover. Atherosclerosis 1993;101:61-68.

¹¹Kostner K, Gupta S. Niacin: a lipid polypill? Expert Opin Pharmacother 2008;9:2911-20.

¹²Rumberger J, Napolitano J, Azmumano I et al. Pantethine, a derivative of vitamin B(5) used as a nutritional supplement, favorably alters low-density lipoprotein cholesterol metabolism in low- to moderate-cardiovascular risk North American subjects: a triple-blinded placebo and diet-controlled investigation. Nutr Res 2011;31:608-615.

¹³McRae M. Treatment of hyperlipoprotenemia with pantethine: a review and analysis of efficacy and tolerability. Nutr Res 2005;25:319-333.

¹⁴Malaguarnera M, Vacante M, Avitabile T et al. L-Carnitine supplementation reduces oxidized LDL cholesterol in patients with diabetes. Am J Clin Nutr 2009;89:71-76.

¹⁵Sirtori C, Calabresi L, Ferrara S et al. L-carnitine reduces plasma lipoprotein(a) levels in patients with hyper Lp(a). Nutr Metab Cardiovasc Dis 2000;10:247-251.

¹⁶Derosa G, Cicero A, Gaddi A et al. The effect of L-carnitine on plasma lipoprotein(a) levels in hypercholesterolemic patients with type 2 diabetes mellitus. Clin Ther 2003;25:1429-1439.

¹⁷Zhang Y, Han P, Wu N et al. Amelioration of Lipid Abnormalities by α-Lipoic acid Through Antioxidative and Anti-Inflammatory Effects. Obesity 2011;19:1647-1653.

¹⁸Harding S, Rideout T, Jones P. Evidence for using alpha-lipoic acid in reducing lipoprotein and inflammatory related atherosclerotic risk. J Diet Suppl 2012;9:116-127.

¹⁹Maeba R, Hara H, Ishikawa H et al. Myo-inositol treatment increases serum plasmalogens and decreases small dense LDL, particularly in hyperlipidemic subjects with metabolic syndrome. J Nutr Sci Vitaminol 2008;54:196-202.

²⁰Jariwalla R. Inositol hexaphosphate (IP6) as an anti-neoplastic and lipid-lowering agent. Anticancer Res 1999;19:3699-702.

²¹Minozzi M, Nordio M, Pajalich R. The Combined therapy myo-inositol plus D-Chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients. Eur Rev Med Pharmacol Sci 2013;17:537-40.

²²Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res 2012;53:1783-99.

²³Vance D. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis.Curr Opin Lipidol 200819:229-34.

²⁴Sundaram B, Singhal K, Sandhir R. Anti-atherogenic effect of chromium picolinate in streptozotocin-induced experimental diabetes. J Diabetes 2013;5:43-50.

²⁵Sealls W, Penque B, Elmendorf J. Evidence that chromium modulates cellular cholesterol homeostasis and ABCA1 functionality impaired by hyperinsulinemia--brief report. Arterioscler Thromb Vasc Biol 2011;31:1139-40.

²⁶Press R, Geller J, Evans G. The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects. West J Med. 1990;152:41-5.

²⁷Langsjoen P, Langsjoen A. The clinical use of HMG CoA-reductase inhibitors and the associated depletion of coenzyme Q10. A review of animal and human publications. Biofactors. 2003;18:101-11.

²⁸Cicero A, Derosa G, Miconi A et al. Possible role of ubiquinone in the treatment of massive hypertriglyceridemia resistant to PUFA and fibrates. Biomed Pharmacother 2005 Jul;59:312-7.

²⁹Hamilton I, Gilmore W, Strain J. Marginal copper deficiency and atherosclerosis. Biol Trace Elem Res 2000;78:179-89.

³⁰DiSilvestro R, Joseph E, Zhang W et al. A randomized trial of copper supplementation effects on blood copper enzyme activities and parameters related to cardiovascular health. Metabolism 2012;61:1242-6.

³¹Wildman R, Mao S. Tissue-specific alterations in lipoprotein lipase activity in copper-deficient rats. Biol Trace Elem Res 2001;80:221-9.

³²Natella F, Fidale M, Tubaro F et al. Selenium supplementation prevents the increase in atherogenic electronegative LDL (LDL minus) in the postprandial phase. Nutr Metab Cardiovasc Dis 2007;17:649-56

³³Kaur H, Bansal M. Studies on scavenger receptors under experimental hypercholesterolemia: modulation on selenium supplementation. Biol Trace Elem Res 2011;143:310-9.

³⁴Beattie J, Gordon M, Duthie S et al. Suboptimal dietary zinc intake promotes vascular inflammation and atherogenesis in a mouse model of atherosclerosis. Mol Nutr Food Res 2012;56:1097-1105.

³⁵Wu J, Wu Y, Reaves S et al. Apolipoprotein A-I gene expression is regulated by cellular zinc status in hep G2 cells. Am J Physiol. 1999;277:C537-44.

³⁶Shen H, MacDonald R, Bruemmer D et al. Zinc deficiency alters lipid metabolism in LDL receptor deficient mice treated with rosiglitazone. J Nutr 2007;137:2339-45.

Additional references at http://www.spectracell.com/clinicians/clinical-education-center/online-library-mnt-hypercholesterolemia-abstracts/

www.SpectraCell.com

Copyright 2013 SpectraCell Laboratories, Inc. All rights reserved. Doc 396 05.13

